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Quantum Monte Carlo simulation of a two-dimensional Bose gas
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The equation of state of a homogeneous two-dimensional Bose gas is calculated using quantum
Monte Carlo methods. The low-density universal behavior is investigated using different interatomic
model potentials, both finite-ranged and strictly repulsive and zero-ranged supporting a bound state.
The condensate fraction and the pair distribution function are calculated as a function of the gas
parameter, ranging from the dilute to the strongly correlated regime. In the case of the zero-range
pseudopotential we discuss the stability of the gas-like state for large values of the two-dimensional
scattering length, and we calculate the critical density where the system becomes unstable against
cluster formation.

PACS numbers:

I. INTRODUCTION

Degenerate low-dimensional gases are presently at-
tracting considerable interest as model systems to inves-
tigate beyond mean-field effects and phenomena where
many-body correlations, thermal and quantum fluctua-
tions play a relevant role [1]. In two dimensions (2D), it
is well known that thermal excitations destroy long-range
order and Bose-Einstein condensation (BEC) can not ex-
ist in large bosonic systems at finite temperature [2].
Nevertheless, a defect-mediated phase transition from
a high-temperature normal fluid to a low-temperature
superfluid was predicted by Berezinskii, Kosterlitz and
Thouless (BKT) [3] and has been observed in thin films
of liquid 4He [4]. At zero temperature, fluctuations are
instead negligible and BEC is possible. The ground-state
energy per particle of a homogeneous dilute Bose gas in
2D has been first calculated by Schick [5] and is given by

EMF

N
=

2πh̄2

m

n

log(1/na2
2D)

, (1)

wherem is the mass of the particles, n is the number den-
sity and a2D is the 2D scattering length. The above result
holds for small values of the gas parameter, na2

2D ≪ 1,
and can be obtained within a mean-field approximation
using the coupling constant

g2D =
4πh̄2

m

1

log(1/na2
2D)

. (2)

The presence at low energy of a density dependent cou-
pling constant is a peculiar feature of 2D systems.

Bose gases in quasi-2D have been realized with spin-
polarized hydrogen on a liquid-helium surface [6] and
with alkali-metal atoms confined in highly anisotropic
harmonic traps [7, 8, 9]. In these systems, the trans-
verse motion of the atoms is frozen to zero-point oscil-
lations resulting in fully 2D kinematics, but the inter-
atomic scattering processes are still three-dimensional

(3D). In fact, the 3D s-wave scattering length a3D is
always much smaller than the characteristic length of
the tight transverse confinement. Theoretical studies
of quasi-2D trapped systems predict the existence of a
low-temperature quasicondensate phase [10, 11] whose
properties have been investigated using mean-field ap-
proaches [12]. The nature of the transition in confined
systems and whether it belongs to the BEC or BKT uni-
versality class is still an open problem both experimen-
tally and theoretically.

An important theoretical prediction for quasi-2D Bose
gases in harmonic traps is the renormalization of the
coupling constant due to the tight confinement in one
direction. To logarithmic accuracy the result is given
by [11, 13]

g2D =
2
√

2πh̄2

m

1
az

a3D

+ 1√
2π

log(1/n(0)a2
z)
, (3)

where az =
√

h̄/mωz is the harmonic oscillator length,
fixed by the frequency ωz of the tight transverse confine-
ment, and n(0) is the 2D density in the center of the trap.
If a3D ≪ az, one can neglect the log term in Eq. (3) and
the resulting coupling constant is determined by the 3D
scattering length. On the contrary, if a3D ≫ az, g2D

becomes independent of the value of a3D and a regime
of pure 2D scattering is achieved with a2D = az. This
universal regime, where the properties of the system only
depend on density and not on interaction, is highly in-
teresting and can be realized in trapped gases by using a
Feshbach resonance [14] to achieve large values for a3D.

In this work we investigate the ground-state proper-
ties of a strictly 2D homogeneous Bose gas using quan-
tum Monte Carlo techniques. We determine the equation
of state over a wide range of values of the gas parame-
ter from the extremely dilute regime, na2

2D ∼ 10−7, to
the strongly correlated regime, na2

2D ∼ 0.1. The calcu-
lations of the energy per particle are carried out using
three different interatomic model potentials: two repul-
sive finite-ranged potentials and a zero-range pseudopo-
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tential which supports a two-body bound state. We in-
vestigate beyond mean-field corrections to the equation
of state (1) and their dependence on the gas parame-
ter na2

2D. In the case of the zero-range pseudopotential,
from a study of the system compressibility as a function
of the gas parameter we estimate that na2

2D ≃ 0.04 is
the critical density at which the gas-like state becomes
unstable against cluster formation. This result puts an
upper limit to the value of density that can be reached
in harmonic traps when one enters the regime of pure 2D
scattering. We also report results of the pair distribution
function and the condensate fraction as a function of the
gas parameter.

The structure of the paper is as follows. In Section II
we introduce the many-body Hamiltonian and the model
interatomic potentials we use in the simulations. We also
discuss the quantum Monte Carlo methods employed in
the present study and the choice of the trial wave func-
tions. Section III containes the results obtained and Sec-
tion IV draws our conclusions.

II. METHOD

We consider a homogeneous system of N spinless
bosons in 2D described by the many-body Hamiltonian

H = − h̄2

2m

N
∑

i=1

∇2
i +

∑

i<j

V (ri − rj) , (4)

where ri = xi î + yiĵ denotes the 2D position vector of
the i-th particle and V (r) is the two-body interatomic
potential. We use different choices for the interatomic
potential V (r):

(i) Hard-disk (HD) potential defined by

V HD(r) =

{

∞ (r < a2D)
0 (r > a2D) ,

(5)

in which case the hard-disk diameter corresponds to the
scattering length a2D.

(ii) Soft-disk (SD) potential defined by

V SD(r) =

{

V0 (r < R)
0 (r > R) ,

(6)

in which case the scattering length is given in terms of the
modified Bessel function I0(x) and its derivative I ′0(x),

a2D = R exp

[

− 1

RK0

I0(RK0)

I ′0(RK0)

]

, (7)

where K2
0 = mV0/h̄

2 with V0 > 0. For a finite V0 one has
always R > a2D; if V0 → +∞ the SD and HD potentials
coincide with a2D = R. In the present calculations, the
range of the SD potential is kept fixed to the value R =
5a2D and the height V0 is determined through Eq. (7) to
give the desired value of a2D.

(iii) Zero-range pseudopotential (PP) defined by [15]

V PP (r) = −2πh̄2

m

δ(r)

log(qa2D)

[

1 − log(qr)r
∂

∂r

]

, (8)

where the second term in the square brackets is a regu-
larizing operator with q an arbitrary wave vector. The
potential V PP (r) supports a two-body bound state with
energy ǫb = −4h̄2/(ma2

2De
2γ) and wave function fb(r) =

K0(2r/(a2De
γ)), where K0(x) is the modified Bessel

function and γ ≃ 0.577 is the Euler constant.
The calculations with the repulsive potentials V HD(r)

and V SD(r) are carried out using the diffusion Monte
Carlo (DMC) method. This technique solves the many-
body time-independent Schrödinger equation by evolving
the function f(R, τ) = ψT (R)Ψ(R, τ) in imaginary time
τ = it/h̄ according to the time-dependent Schrödinger
equation

− ∂f(R, τ)

∂τ
= − D∇2

R
f(R, τ) +D∇R[F(R)f(R, τ)]

+ [EL(R) − Eref ]f(R, τ) . (9)

Here Ψ(R, τ) denotes the wave function of the sys-
tem and ψT (R) is a trial function used for importance
sampling. In the above equation R = (r1, ..., rN ),
EL(R) = ψT (R)−1HψT (R) denotes the local energy,
F(R) = 2ψT (R)−1∇RψT (R) is the quantum drift force,
D = h̄2/(2m) plays the role of an effective diffusion
constant, and Eref is a reference energy introduced to
stabilize the numerics. The energy and other observ-
ables of the ground state of the system are calculated
from averages over the asymptotic distribution function
f(R, τ → ∞). Apart from statistical errors, the DMC
method determines the ground-state energy of a system
of N bosons exactly.

In the case of the pseudopotential V PP (r), Eq. (8),
the gas-like state is not the ground state of the system,
but is a highly-excited state of the Hamiltonian. We ex-
pect, however, that for small values of the gas parameter,
na2

2D ≪ 1, the gas-like state is stable against formation
of many-body bound states. The calculations with the
PP potential are performed at the level of the variational
Monte Carlo (VMC) method to avoid the technical dif-
ficulties that arise in the study of excited states in the
DMC method. Nevertheless, as it will be shown in Sec-
tion III, the accuracy achieved by using this variational
approach is very high. The VMC technique is based on
the variational principle

〈ψT |H |ψT 〉
〈ψT |ψT 〉

≥ E , (10)

which is here applied to excited states of the Hamiltonian
H . For a trial wave function ψT with a given symmetry,
the variational estimate provides an upper bound to the
energy E of the lowest excited state of the Hamiltonian
H with that symmetry.
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In all the calculations the trial wave function ψT (R) is
taken of the Jastrow form

ψT (r1, ..., rN ) =
∏

i<j

f(rij) , (11)

where the correlation factor f(r) is chosen as the solu-
tion of the two-body Schrödinger equation subject to the
boundary conditions f(r ≥ d) = 1 and f ′(r ≥ d) = 0
on the wave function and its first derivative respectively,
with d a variational parameter. For the repulsive poten-
tials, HD and SD, f(r) corresponds to the ground-state
two-body wave function. On the contrary, in the case of
the PP interaction, f(r) is chosen as the two-body wave
function corresponding to the lowest excited state with
positive energy. The pseudopotential V PP imposes the
following boundary condition on the pair wave function
for zero interparticle distance

[rf ′(r)]r=0

[f(r) − log(qr)rf ′(r)]r=0

= − 1

log(qa2D)
. (12)

The free two-particle problem in 2D −h̄2/m∇2f(r) =
h̄2k2/mf(r), holding for r 6= 0, gives the general solution

f(r) = AJ0(kr) +BY0(kr) , (13)

in terms of the J0(x) and Y0(x) Bessel functions. The
boundary condition (12) is imposed by the relation

a2D =
2e−γ

k
exp

(

−πA
2B

)

. (14)

In addition we require that f(r) possess only one node for
distances 0 < r < d. The boundary conditions at r = d
together with (14) fix the values of the constants A and
B and of the wavevector k. If d≫ a2D, the eigenenergy
h̄2k2/m is small and the node of f(r) is located at r =
a2D.

All the Monte Carlo calculations have been carried out
considering periodic boundary conditions with a cubic
simulation box whose size L is fixed by the density n and
by the total number of atoms: n = N/L2. The healing
length d is considered everywhere d = L/2 since a VMC
optimization has shown that this is a good option.

III. RESULTS

The numerical simulations are carried out with N =
512 particles for the lowest densities (na2

2D ≤ 10−4) and
with N = 256 particles for the rest. The DMC results
for the energy per particle corresponding to the HD po-
tential are reported in Table I as a function of the gas
parameter. Variational results on the same system have
been obtained in the dilute regime by Mazzanti et al. [16]
using Correlated Basis Functions theory and at high den-
sities by Lei Xing [17] and Soĺıs [18] using VMC. In Fig. 1,
the DMC results for the HD system are compared with

TABLE I: Energy per particle E/N corresponding to the
model potentials V HD(r) (DMC results), V SD(r) (DMC re-
sults) and V PP (r) (VMC results) [energies are in units of
h̄2/(2ma2

2D)].

na2
2D HD SD PP

1 × 10−7 7.738(3) × 10−8 7.732(6) × 10−8

3 × 10−7 2.500(1) × 10−7 2.498(1) × 10−7

1 × 10−6 9.103(5) × 10−7 0.909(1) × 10−6 9.162(7) × 10−7

3 × 10−6 2.982(2) × 10−6 2.977(4) × 10−6

1 × 10−5 1.108(2) × 10−5 1.106(1) × 10−5 1.115(1) × 10−5

3 × 10−5 3.710(4) × 10−5 3.702(2) × 10−5

1 × 10−4 1.417(1) × 10−4 1.415(1) × 10−4 1.428(1) × 10−4

3 × 10−4 4.922(5) × 10−4 4.910(2) × 10−4

1 × 10−3 1.981(4) × 10−3 1.972(1) × 10−3 1.994(1) × 10−3

3 × 10−3 7.34(2) × 10−3 7.224(3) × 10−3

1 × 10−2 3.296(5) × 10−2 3.057(2) × 10−2 3.304(4) × 10−2

3 × 10−2 1.436(2) × 10−1 1.105(1) × 10−1 1.369(6) × 10−1

1 × 10−1 8.94(2) × 10−1 4.161(4) × 10−1

FIG. 1: Energy per particle as a function of the gas parameter
for the HD potential. Solid line: mean-field result, Eq. (1).
Error bars are smaller than the size of the symbols.

the mean-field result, Eq. (1). We find a remarkably
good agreement up to large values of na2

2D. It is worth
noticing that the range of validity of the mean-field ap-
proximation is in 2D significantly larger than the one
observed in 3D [19]. Beyond mean-field corrections to
the equation of state are shown in Fig. 2, where we plot
the difference (E − EMF )/N for the three model poten-
tials: V HD(r) (DMC results), V SD(r) (DMC results)
and V PP (r) (VMC results). Focusing on the exact DMC
results, one can notice the universal behavior of the equa-
tion of state for na2

2D ≪ 1. The results of the HD and SD
model potentials are practically indistinguishable up to
na2

2D ∼ 10−2 (see Table I), showing that beyond mean-
field corrections to Eq. (1) only depend on the value
of the gas parameter na2

2D and not on the details of the
interatomic potential. By increasing na2

2D the results ob-
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FIG. 2: Beyond mean-field corrections to the equation of
state. Circles, HD potential; triangles: SD potential; squares:
PP potential. Dashed line: numerical fit to the results of
the HD potential, Eq. (16). Error bars are smaller than the
size of the symbols. Inset: region of extremely dilute systems
na2

2D ≤ 10−6.

FIG. 3: Energy per particle and inverse compressibility as
a function of the gas parameter. Symbols are as in Fig. 2.
Thick and thin dashed lines: best fit (16) to the HD equation
of state and corresponding mc2, respectively. Thick and thin
solid line: polynomial best fit to the PP equation of state and
corresponding mc2, respectively. Error bars are smaller than
the size of the symbols.

tained with the SD potential (triangles in Fig. 2) start to
deviate from the ones corresponding to the HD potential
(circles in Fig. 2) approximately about na2

2D ∼ 0.01. The
VMC results for the PP potential are upper bounds to
the eigenenergy of the gas-like state. However, looking at
Table I and Fig. 2, one can see that they are nearly indis-
tinguishable from the exact HD and SD energies in the
low-density regime. A similar accuracy for the energy of
the gas-like state is expected also for larger values of the
gas parameter, where the results of the PP interaction
start to separate from the HD ones as the effects of the
finite interaction range become more important. It is also

FIG. 4: Condensate fraction as a function of the gas parame-
ter. Circles, HD potential; triangles, SD potential. Solid line:
result from Bogoliubov theory, Eq. (17).

FIG. 5: Pair distribution function of a HD gas obtained for
three values of the gas parameter: na2

2D = 10−4, solid line;
na2

2D = 0.01, dashed line; na2
2D = 0.1, dotted line.

worth noticing that for the smallest values of na2
2D (inset

of Fig. 2) the beyond mean-field correction is negative.
This is consistent with the perturbation expansion [20]

E − EMF

N
= −2πh̄2n

m

log[log(1/na2
2D)]

[log(na2
2D)]2

, (15)

which is expected to hold if log[log(1/na2
2D)] ≫ 1. For

our smallest value of the gas parameter, na2
2D = 10−7,

one finds log[log(1/na2
2D)] ≃ 2.8. We fit the HD equation

of state using the expression

E − EMF

N
=

2πh̄2n

m
(16)

×
[

−A log[log(1/na2
2D)]

[log(na2
2D)]2

+
B

[log(na2
2D)]2

]

,

where A and B are free parameters. The best fit to all
HD points, with the exclusion of the one at the highest
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density na2
2D = 0.1, gives A = 0.86 and B = 2.26 with

χ2/ν = 1.2. The resulting curve is shown in Fig. 2 with
a dashed line. We notice that the value A = 0.86 is close
to the prediction A = 1 from the expansion (15).

In Fig. 3, we show an enlargement of the equation of
state in the gas parameter range 0.01 ≤ na2

2D ≤ 0.1.
In this region, the VMC results corresponding to the
V PP (r) potential significantly deviate from the HD equa-
tion of state (thick dashed line). By using a polyno-
mial fit to the PP equation of state (thick solid line),
we calculate the inverse compressibility of the system
mc2 = n∂µ/∂n, where c is the speed of sound and
µ = dE/dN is the chemical potential. The inverse com-
pressibility (thin solid line) exhibits a maximum and then
drops to zero for na2

2D ≃ 0.04. For comparison, the in-
verse compressibility of the HD gas as obtained from the
fit (16) is shown with a thin dashed line. We interpret
the vanishing of mc2 as the onset of instability against
cluster formation.

The results for the condensate fraction corresponding
to the HD and SD potentials are shown in Fig. 4 as
a function of the gas parameter. The condensate frac-
tion, N0/N , is obtained from the long-range behavior of
the one-body density matrix N0/N = limr→∞ ρ(r) (see
Ref. [21] for further details). The Bogoliubov theory ap-
plied to the 2D Bose gas gives the result [5]

N0

N
= 1 +

1

log(na2
2D)

, (17)

which should be contrasted with the 3D result N0/N =

1− 8
√

na3
3D/(3

√
π). From Fig. 4 one sees that for small

values of the gas parameter the results of both the HD
and SD potential agree with Eq. (17). For larger val-
ues of na2

2D the Bogoliubov result (17) overestimates the
condensate fraction of the HD gas. In the case of the SD
potential we notice that N0/N first decreases by increas-
ing the gas parameter and then increases. This happens

at densities where the interaction ranges of the particles
start to overlap resulting in a reduction of interaction
effects. It is worth noticing that in the region where Bo-
goliubov theory applies, for the same value of the gas
parameter the condensate depletion is larger in 2D than
in 3D, showing that quantum fluctuations are more ef-
fective in systems with reduced dimensionality.

Finally in Fig. 5 we report results of the pair distribu-
tion function g2(r) corresponding to the HD potential for
three different values of the gas parameter na2

2D = 10−4,
0.01, 0.1. The function g2(r) gives the probability that
two particles will be separated by a distance r. A shell-
like structure in the pair distribution function is visible
only for the highest density. The reduction from three
to two dimensions changes the long-range behavior of
g2(r) turning the dependence (g3D

2 (r) − 1) ∝ 1/r4 into
(g2D

2 (r) − 1) ∝ 1/r3 and therefore the relevance of long-
range correlations is enhanced in 2D.

IV. CONCLUSIONS

We have carried out a study of the ground-state prop-
erties of a 2D homogeneous Bose gas with quantum
Monte Carlo techniques. The universal behavior of the
equation of state for small values of the gas parameter
has been investigated by analyzing both mean-field and
beyond mean-field contributions. By using a zero-range
pseudopotential to describe interatomic interactions we
have estimated that na2

2D ≃ 0.04 is the critical density
at which the system becomes unstable against cluster
formation. These results are relevant for present and
future experiments with ultracold Bose gases in highly
anisotropic harmonic traps.
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